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Visible/near-infrared (vis/NIR) spectroscopy combined with multivariate analysis was used to quantify
chlorophyll content in tomato leaves and classify tomato leaves with different genes. In this study,
transgenic tomato leaves with antisense LeETR1 (n ) 106) and their parent nontransgenic ones
(n ) 102) were measured in vis/NIR diffuse reflectance mode. Quantification of chlorophyll content
was achieved by partial least-squares regression with a cross-validation prediction error equal to
2.87. Partial least-squares discriminant analysis was performed to classify leaves. The results show
that differences between transgenic and nontransgenic tomato leaves do exist, and excellent
classification can be obtained after optimizing spectral pretreatment. The classification accuracy can
reach to 100% using the derivative of spectral data in the full and partial wavenumber range. These
results demonstrate that vis/NIR spectroscopy together with chemometrics techniques could be used
to quantify chlorophyll content and differentiate tomato leaves with different genes, which offers the
benefit of avoiding time-consuming, costly, and laborious chemical and sensory analysis.
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INTRODUCTION

Chlorophyll is one of the most important pigments in higher
plant leaves, and it changes throughout the different stages of
plant development and between and within species. Therefore,
leaf chlorophyll content is a parameter of significant interest
from a physiological perspective (1).

With the development of plant molecular biology, genetic
engineering, genomics, and biochemistry, unprecedented progress
has been seen in agriculture, livestock, food quality, nutrition,
health, industry, and medicine, and it established the commercial
cultivations of transgenic plant varieties which contain new traits
including insect resistance, herbicide resistance, delayed fruit
ripening, flower color, virus resistance, low amount of nitrates,
production of an antifreeze protein, etc. (2, 3). However, there
are global issues that arise from the use of genetic modification
techniques besides their benefits accruing to consumers, such
as the transfer of the introduced genes to wild plants and
nontransgenic plants and the indirect effects of the transgenic
crops on the environment, modification of the biodiversity of
wildlife as a result of changes in the availability of food, and
unpredicted harmful changes in their nutritional quality (2, 4).
Transgenic products contain an additional trait encoded by an
introduced gene, which generally produce an additional protein
that confers the trait of interest. Raw material (e.g., grain) and

processed products (e.g., food) derived from transgenic products
might thus be identified by testing the presence of introduced
DNA or by detecting expressed novel proteins encoded by the
genetic material (5). To monitor and verify the presence and
the amount of genetically modified organisms (GMOs) in
agricultural crops and in products derived, a demand has been
generated for analytical methods capable of detecting, identify-
ing, and quantifying either the DNA introduced or the protein-
(s) expressed in transgenic plants (6, 7). Ideally an identification
technique should be rapid, easy to use, and of low cost (8).

Various methodologies that have been employed to analyze
and/or detect the presence of GMOs in food products have been
developed, such as polymerase chain reaction, enzyme linked
immunosorbent assays, biosensor, microarray, chip, electro-
phoresis, X-ray fluorescence, mass spectrometry, etc. (9). These
methods based on DNA or protein are versatile, sensitive,
qualitative or quantitative, specific, and precise, but they also
have some disadvantages including high cost, difficulty of use,
need for special equipment, long duration, and so on (5, 10). In
many situations, a test will be required to detect the presence
of GMOs in commodities or food. This requirement for
qualitative or quantitative analysis will impact on the most
appropriate testing method for that application. Near-infrared
(NIR) spectroscopy, allied to multivariate calibration techniques,
has gained wide acceptance in different fields (11). The
advantage of NIR spectroscopy versus other previously used
techniques lies in its nondestructive, simple, fast nature, which
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makes this technology ideally suited for on-line process
monitoring and quality control (12). Though NIR spectrometers
are not precise enough to detect compounds at the DNA
concentration level (parts per trillion), spectral differences caused
by larger structural changes (if any) accompanying the modi-
fication might be measurable.

NIR spectroscopy has increasingly been adopted as an
analytical tool in various fields. One of its most common
applications combined with chemometrics methods for clas-
sification, such as soft independent modeling of class analogy
(13, 14), principal component analysis (15), partial least-squares
discriminant analysis (PLSDA) (16), artificial neural networks
(ANNs) (17), linear discriminant analysis (18), locally weighted
regression (LWR) (19), and so on, has been used to discriminate
samples belonging to one of several distinct groups based on
their spectral properties (18).

Recently, this technique has been used to distinguish trans-
genic products from conventional ones. Roussel et al. (19)
detected and segregated Roundup Ready soybeans from con-
ventional soybeans using partial least-squares (PLS), LWR, and
ANN models by NIR spectroscopy. A total of 93% accurate
classification was obtained using a database of approximately
8000 samples with the LWR method. Rui et al. (20) applied
back-propagation algorithm to discriminate transgenic corns and
their parents by continuous wave of NIR diffuse reflectance
spectroscopy range of 4000-12 000 cm-1.

The objective of this study is to examine the feasibility of
using the visible/near-infrared (vis/NIR) diffuse reflectance
spectroscopic techniques to quantify chlorophyll content and
distinguish transgenic tomato leaves with antisenseLeETR1 from
nontransgenic tomato leaves. The specific goals were to (1)
investigate the potential of vis/NIR spectroscopy in quantifica-
tion of chlorophyll concentration in tomato leaves and discrimi-
nate the differences depending on this composition, (2) detect
the presence of transgenic tomato leaves, using PLSDA for
classifying vis/NIR leaf spectra into two groups, nontransgenic
tomato leaves and transgenic ones, and (3) evaluate the
classification accuracy of PLSDA models.

MATERIALS AND METHODS

Samples.Transgenic tomato plants were produced by using standard
Agrobacterium tumefaciensmediated plant transformation methods.
Polymerase chain reaction and southern-blot analysis were used to check
the integrity and number of copies of the introduced genes (21). Pure
transgenic plants with antisenseLeETR1 and nontransgenic plants were
grown under standard greenhouse conditions. One hundred plants of
each variety were grown, and at least one leaf was collected from one
plant. A total of 106 transgenic leaves and 102 nontransgenic ones
with similar sizes were quickly picked for vis/NIR diffuse reflectance
measurements.

Chlorophyll Content Measurements.A chlorophyll meter measures
transmission of red light at a wavelength where chlorophyll absorbs
light and transmission of infrared light at a wavelength where no
absorption occurs. On the basis of these two transmission values, the
instrument calculates a SPAD value that is quite well correlated with
chlorophyll content (22). In this study, a hand-held chlorophyll meter
(SPAD-502 chlorophyll meter, Minolta Camera Co., Ltd., Japan) was
used to measure leaf chlorophyll content. Chlorophyll content is
different over one leaf, but at a small area, we suppose the distribution
of chlorophyll content is same. The chlorophyll meter can get
chlorophyll content at a small area where the vis/NIR spectra were
collected. Every leaf was measured three times, and the average value
was denoted as the chlorophyll content of that leaf.Table 1 shows the
descriptive statistics for the chlorophyll concentrations analyzed in both
tomato leaf varieties. By comparison of the chlorophyll concentrations
of the samples, a statistically significant difference in the values was
found using a StudentF test (F < 0.05).

Spectroscopic Measurements.The vis/NIR diffuse reflectance
spectra were collected with a FT-NIR spectrometer system (Thermo
Electron Corp., Madison, WI) fitted with an optic fiber cable, a cooled
Si detector (9000-15000 cm-1), and a 50 W quartz halogen light
source. In the head of the bifurcated cable, both light source beams
and receptor beams were enclosed in the fiber probe randomly.

The spectrometer was connected via a PCI card to a personal
computer, and specific software OMINIC 6.1a (Thermo Electron Corp.,
Madison, WI) was available to modify spectrometer setup and store
acquired spectra. The mirror velocity was 0.9494 cm s-1, and the
resolution was 8 cm-1 in this work. Each spectrum was the average of
32 successive scans.

Leaves were placed directly upon the fiber probe by hand with the
same orientation, the adaxial epidermis of leaf was contacted with
probe’s surface closely, and the reflectance spectrum of each leaf was
obtained. On each leaf, a diffuse reflectance spectrum was measured
randomly three times, and only the averaged spectrum of the three
spectra was used for analysis and stored as the logarithm of the
reciprocal of the reflected (R) energy (log(1/R)). Before fruit spectra
acquisition, a reference spectrum was collected from a standard white
Teflon cylinder. The vis/NIR measurements were performed at 20°C
in a dark room only in 1 day, and spectra collections for transgenic
samples and nontransgenic ones were alternate.

Spectral Data Pretreatment.NIR spectra are affected by both the
concentration of the chemical constituents and the physical properties
of the analyzed product, and the latter properties account for the majority
of the variance among spectra (23). It means that physical properties,
such as particle size and distribution affect spectra strongly, while
chemical composition is considered as small. It is necessary to perform
mathematical pretreatments to reduce the effects of scatter (24) and
enhance the contribution of the chemical composition. In this study,
the pretreatments used for the calibrations were multiplicative scattering
correction (MSC) and the first and second derivative (25).

Data Analysis. Chemometrics analysis was performed using the
commercial software package TQ Analyst v6.2.1 (Thermo Nicolet
Corporation, Madison, WI).

The chlorophyll of tomato leaf quantification models were developed
using partial least-squares regression. Leave-one-out cross-validation
was performed to estimate the prediction error and detect any outliers.
In this validation, all samples except one are used to construct a PLS
model, and then the model is used to predict the remained sample.
After that, a second sample is left out from all samples, and a newly
constructed model is used to predict the second sample. This procedure
is repeated until each sample is left out and predicted by a model once.
In this step, spectrum outlier diagnostic, which finds the spectra of the
standards which are most unlike the spectra of the other standards and
uses either the Dixon or the Chauvenet test for outliers to determine
whether the difference is significant, was run. In this diagnostic, the
spectral and concentration information for each component and standard
are used to determine Mahalanobis distance values. The justification
criterion is similar to that reported by Liu (26).

Discriminant studies to classify tomato leaves with different genes
were performed using PLSDA. PLSDA is a PLS application for the
optimum separation of classes, and each sample was assigned a dummy
variable 1 or 2 as a reference value, an arbitrary number which indicates
whether the sample belongs to a particular group or not (14). In this
case, samples of transgenic tomato leaf were assigned a numeric value
of 1, and those of nontransgenic leaf were assigned 2. The PLSDA
model was then developed by assigning the reference value (dummy

Table 1. Range, Mean, Standard Deviation (SD), and Significance of
Differences in Chlorophyll for Transgenic and Nontransgenic Tomato
Leaves

range mean SD
significance

of differencea

transgenic tomato leaves 38.5−61.4 49.61 5.97 *
nontransgenic tomato leaves 45.7−65.4 53.68 3.81 *

a Asterisk indicates significance, F < 0.05.
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variable) for each sample. A sample was considered to be correctly
categorized if the predicted value lay on the same side of the midpoint
of the assigned values (27). The transgenic sample was classified
correctly if the value was between 0.5 and 1.5, else the sample was
classified wrong. It was a nontransgenic sample if the value was
between 1.5 and 2.5. The criteria for the cutoff selected were similar
to those reported by Cozzolino and Andre (15, 16). In this step, 150
samples (75 transgenic samples and the same number of nontransgenic
ones) were used for calibration, and the remaining 58 ones for
validation. The samples for calibration and validation sets were chosen
randomly.

Wavelength selection not only enhances the stability of the model
resulting from the collinearity in multivariate spectra but also helps to
interpret the relationship between the model and the sample composi-
tions. It is also crucial to select an appropriate portion to improve the
performance of a calibration model (28). The wavenumber cutoff
beyond 14881 cm-1 and under 9091 cm-1 was selected due to low
signal-to-noise ratio which is typical for devices equipped with fiber
optics. Therefore, only the spectral region ranging from 9091 to 14881
cm-1 was used. In this research, according to our FT-NIR spectrometer
and TQ Analyst software, which measured the intensities of all the

data points using the algorithm specified in the region type in the
software and suggested spectrum range to develop robust models, the
spectra were divided into two regions. Region one ranged from 9091
to 12 500 cm-1 and region two from 12 500 to 14 881 cm-1. Each region
has at least one peak and one shoulder. For separate regions or
combinations of these regions, PLS and PLSDA models with different
loadings were investigated. The optimal spectral range and model size
were then selected and determined by the lowest value of the predicted
residual error sum of squares. It is expected to have ideal models with
the lower root-mean-square error of calibration (RMSEC), root-mean-
square error of cross-validation (RMSECV), and root-mean-square error
of prediction as well as the higher correlation coefficientr.

All of these different procedures were evaluated to find the spectral
region and the data pretreatment method that give the best prediction
and classification.

RESULTS AND DISCUSSION

Spectral Analysis. Spectra of tomato leaves are shown in
Figure 1a. The transgenic tomato leaf spectrum is offset by
some units for clarity. It is readily apparent that no significant
difference that can be observed by the naked eye exists between
them. AsTable 1shows, one difference between these varieties
is chlorophyll content. In the case of transgenic tomato leaves,
the mean value of chlorophyll is 49.61; however, for nontrans-
genic tomato leaves, the mean value is 53.68, a little higher
than that of transgenic ones.Figure 1b shows the average
spectra of the transgenic and nontransgenic tomato leaf samples
analyzed. Obvious differences were found from a visual
observation of the two spectra. The spectra reveal peaks both
at 10 310 cm-1 representing stretch vibrations associated with
the O-H group in water and at 14 550 cm-1 related to pigment
absorption where a large gap is indicated between these lines.
Figure 1b also indicates that the absorption at every wavelength
for the averaged spectrum of transgenic tomato leaves is
remarkably lower than that of nontransgenic tomato leaves. As
illustrated, absorption at 14550 cm-1 is the highest. Even though
chlorophyll content might partially explain the observed spectral
difference between types of leaf, the difference might arise from
other facts. (1) Besides chlorophyll content, there are other
different compositions, such as water. (2) There may be a
different percentage of ethylene resulting from the introduced
antisenseLeETR1. (3) Since ethylene acts to promote the
transcription and translation of numerous ripening-related genes,
including those involved in cell wall breakdown and carotenoid
biosynthesis (29), some ingredients such as carotenoid may be
changed. The high variations in the raw spectra can be seen in
Figure 1c, which shows the standard deviation of spectral data
at 6223 points and were around 13 080, 13 855 and 14 250 cm-1.
As mentioned earlier, due to low signal-to-noise ratio beyond
14881 cm-1 and under 9091 cm-1, the standard deviation there
was very high.

Figure 1. (a) Raw spectra, (b) average spectra, and (c) standard deviation
of raw spectra of the transgenic and nontransgenic tomato leaves.

Figure 2. First two PC score plot of tomato leaves using raw NIR spectra.
Circles represent transgenic samples, and triangles represent nontrans-
genic samples.
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Overall, transgenic tomato leaves and nontransgenic tomato
leaves are very complex, which results in vis/NIR diffuse
reflectance spectra that are highly overlapped; however, unique
spectral differences between two samples can provide important
information.

To investigate the feasibility of discrimination between the
samples of the two varieties, the first and second score plots
were shown (Figure 2), derived from the raw spectra of the
samples. PC1 accounts for 70.14% of the variation in the spectra,
and PC2 explains 24.71% of the variation in the spectra. From
this figure, we can find that the samples are divided roughly
into two groups. There is no clear boundary, and many points
overlap each other. It can also be seen that nontransgenic
samples are mostly located on the top half of the plot while
transgenic ones are observed on the reverse half in a great
measure, which indicated that nontransgenic samples have
positive scores in the second component and transgenic ones
have negative ones.

Quantification Analysis. A total of six prediction models
were developed for the quantification of chlorophyll content in
transgenic and nontransgenic tomato leaf samples. These
involved the use of two forms of spectral datasraw and MSC.
The summary results of this work are presented inTable 2.
The PLS models are good for predicting chlorophyll concentra-
tions, and their prediction accuracy can be improved by using
the MSC process with the exception of the range of 12 500-
14 881 cm-1. For raw spectral data, the wavenumber range
12 500-14 881 cm-1 only required three loadings and also had
a relatively low RMSEC of 1.76,r equal to 0.94534. We also
can find that models using the whole spectra with or without
suitable data handing may give a relatively robust prediction,
but for the models using 9091-12 500 cm-1 wave band, the
results were not so satisfactory. It might arise from the fact that
pigment, such as chlorophyll in leaf, makes a contribution to
the vis/NIR models of tomato leaves. Overall, the most accurate
model may be that which involved raw data in the wavenumber
range 12 500-14 881 cm-1, using five PLS loadings and
producing RMSEC and RMSECV equal to 1.59 and 2.87,
respectively. In this model, only one sample was removed.
Figure 3 shows the Mahalanobis distance values of the 208
original leaf samples ranked from smallest to largest. As shown
in figure, when a threshold of 1.640 is selected, one sample

(Mahalanobis distance) 2.341) is rejected for its large
Mahalanobis distance.

Figure 4 shows the correlation between the values determined
by the reference analysis and the values predicted by the vis/
NIR spectroscopy technique on the whole sample set of tomato
leaves. The diagonal line represents ideal results (actual)
calculated value), and so the closer the points are to the line,
the better is the model.

Classification. Table 3 contains the statistics for tomato leaf
samples using PLSDA regression models developed either on
the raw spectra or after first and second derivative spectra using
various wavenumber regions. In agreement with Cozzolino, the
optimal combination of spectral regions varied among regression
methods (30). It can be found that the full spectral region using
the first and second derivative data gave better calibration
statistics, but for raw data, the wavenumber region of 12500-
14881 cm-1 gave a relatively good result. The derivative process
can increase classification, and the percent correct classifications
for transgenic and nontransgenic tomatoes ranged from 83.0%

Figure 3. Distribution of Mahalanobis distance values of 208 tomato leaf samples.

Table 2. Statistics for Leaf Samples Using PLS Regression Models
(Raw and MSC) (n ) 208)

data
type

wavelength
range (nm) r RMSEC RMSECV loadings outliers

raw 9091−14881 0.95208 1.65 2.83 6 1
9091−12500 0.67212 4.01 4.68 5 1
12500−14881 0.95567 1.59 2.87 5 1

MSC 9091−14884 0.95414 1.62 2.81 4 1
9091−12500 0.86462 2.82 2.97 4 1
12500−14881 0.94534 1.76 2.93 3 0

Figure 4. Correlation statistics between the measured values and
calculated values of chlorophyll content in transgenic and nontransgenic
tomato leaves.

Table 3. Statistics for Leaf Samples Using PLSDA Models (Raw, First,
and Second Derivative) (n ) 208)

data
type

wavelength
range (nm) r RMSEC RMSECV

% of
samples
correctly

classified in
calibration loadings

raw 9091−14881 0.71996 0.347 0.3473 83.7 1
9091−12500 0.57663 0.408 0.4083 77.9 1
12500−14881 0.76404 0.323 0.3234 87.0 1

first
derivative

9091−14881 0.95543 0.148 0.1483 100 1

9091−12500 0.92429 0.191 0.1914 100 1
12500−14881 0.94528 0.163 0.1635 100 1

second
derivative

9091−14881 0.95915 0.141 0.1414 100 1

9091−12500 0.90161 0.216 0.2165 98.1 1
12500−14881 0.94883 0.158 0.1582 100 1
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to 100% and 72.5% to 100%, respectively, depending on the
wavenumber range and data type used (Table 4). Table 4 shows
that, in the calibration set, the lowest classifications for
transgenic and nontransgenic tomato leaves were 86.7% and
78.7%, and in the validation set they were 74.2% and 55.6%,
respectively. The use of raw spectral data in the range of 9091-
12 500 cm-1 produced a very high level of error classification.
A total of 28 nontransgenic tomato leaves and 18 transgenic
ones were misclassified with raw spectra in the wavenumber
region of 9091-12 500 cm-1 (Table 4). The wrong classified
samples might be classified to other groups or could not be
identified. Overall, the best model derived was that produced
by the second derivative treatment of spectral data over the entire
wavelength range; this gave a 100% correct classification with
r ) 0.95915, RMSEC value of 0.141, RMSECV value of
0.1414, and a factor in the model. It is a stable and robust model
for its low and similar RMSEC, RMSECV, and highr. Models
based on first and second derivatives of spectra data in the range
12 500-14 881 cm-1 produced models of relatively high
accuracy. These two models have the same high correct
classification, both 100% correct classifications for transgenic
and nontransgenic tomato leaves. This phenomenon could be
attributed to pigment absorptions.

Figure 5 shows the vis/NIR predictions of tomato leaf
varieties using the PLSDA model with the spectra after second
derivative treatment in the full spectral region. Nontransgenic
tomato leaves with predicted values ranged form 1.5 to 2.5 and
transgenic samples from 0.5 to 1.5 were all considered to be
correctly classified by the model. On the basis of the vibrational
responses of chemical bonds to vis/NIR radiation, the model
can discriminate or identify varieties. It is probable that the
higher the variability between sample types in those chemical
entities, which respond in these regions of the spectrum, the

better the accuracy of the model (15). It suggests that PLSDA
models with spectra after derivative treatment obtained enough
information for discriminating the samples because of their
difference in the chemical components. However, relative to
the nature of the method used, it was not possible to define a
single compound or a group of compounds that explain the
differences observed between the two varieties studied.

Conclusions. This study shows the potential of vis/NIR
spectroscopy to quantify chlorophyll content and classify
transgenic and nontransgenic tomato leaves. Calibration models
relating spectral characteristics of samples from tomato leaves
with chemical composition, regarding chlorophyll, were suc-
cessfully built using relatively simple models and variable
selection techniques. With regard to chlorophyll content in
leaves, the PLS regression model produced low RMSEC and
RMSECV equal to 1.59 and 2.87, respectively. The study also
indicates that differences between transgenic and nontransgenic
tomato leaves do exist and groups are apparent. Visible/near-
infrared spectroscopy, combined with multivariate analysis after
the appropriate spectral data pretreatment, has been proven to
be a very powerful tool for judgment of a relative pattern among
objects that have very similar properties. The greatest clas-
sification accuracy was achieved using the second derivative
of spectral data in the full wavelength range, with accuracy up
to 100%. The methods got comprehensive and complementary
information to distinguish tomato leaves with different genes.
Classification methods offer the benefit of avoiding time-
consuming recalibration work for each sample and costly and
laborious chemical and sensory analysis. Further studies are
needed to use chemical parameters expressing chemical quality
of tomato to develop valuable and robust models to discriminate
tomato varieties or blends.
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